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We consider a mean-field model describing the free-cooling process of a two-component granular mixture,
a generalization of the so called scalar Maxwell model. The cooling is viewed as an ordering process and the
scaling behavior is attributed to the presence of an attractive fixed point atv50 for the dynamics. By means
of asymptotic analysis of the Boltzmann equation and of numerical simulations we get the following results:
~1! we establish the existence of two different partial granular temperatures, one for each component, which
violates the zeroth law of thermodynamics;~2! we obtain the scaling form of the two distribution functions;~3!
we prove the existence of a continuous spectrum of exponents characterizing the inverse-power-law decay of
the tails of the velocity, which generalizes the previously reported value of 4 for the pure model;~4! we find
that the exponents depend on the composition, masses, and restitution coefficients of the mixture;~5! we also
remark that the reported distributions represent a dynamical realization of those predicted by the nonextensive
statistical mechanics, in spite of the fact that ours stem from a purely dynamical approach.
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I. INTRODUCTION

One of the basic principles over which the thermodyna
ics is built derives from the simple observation that wh
two systemsA and B are brought together so that they c
exchange energy~or in thermal contact!, after some time
they reach a mutual macroscopic equilibrium state in
absence of energy sources, i.e., their temperatures bec
equal. A second observation is that the thermal equilibri
between a third systemC andA implies the thermal equilib-
rium betweenB andC. These two facts, which represent th
content of the zeroth law of thermodynamics, give sense
the concept of temperature and allow us to build thermo
eters@1#. The simplest state of aggregation of matter, nam
the gaseous state, offers a neat example of the validit
such a principle. When in equilibrium the state of a mixtu
of different gases is characterized by a single temperat
i.e., every species has the same average kinetic energy
particle regardless its molecular nature.

An interesting question related to the zeroth law ari
quite naturally when we consider the behavior of granu
gases, as the assemblies of moving grains at low density
usually called. More in general, granular matter represen
relatively new and unexplored area of research that has
tracted the attention of physicists. Just like ordinary ma
granular matter may appear under different guises: solid
or dense aggregates of particles where the motion of its c
stituents is negligible, liquidlike when a dense aggreg
flows, and as a gas when the mutual distances between g
are larger that their typical linear size. Of course, such
classification is empirical but quite loose, since we are
allowed to employ concepts such as thermodynamic pha
in fact granular matter does not fall into the realm of th
modynamics. In other words, only if we are able to show t
the basic laws of thermodynamics work in the case of gra
lar materials we can employ its results. There is an emerg
1063-651X/2002/65~5!/051305~11!/$20.00 65 0513
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consensus that granular materials do not achieve a pr
thermodynamic equilibrium. Hence, even if the temperat
of a granular assembly can be suitably defined, it does
have the properties required by standard thermodynamic
we shall discuss below. We shall not digress on some in
esting recent proposals aimed to define the temperatur
granular packings@2#, which is a measure of the potentia
energy landscape, but we shall confine our attention to di
systems of granular particles, where the term granular t
perature, defined exactly in the same way as in ordin
gases, i.e., as the average of the kinetic energy per part
has been coined@3#. How far pursue such an analogy? Is th
granular temperature a common feature of all granular ga
in mutual equilibrium, i.e., the quantity that has the role
determining if two system are in equilibrium with respect
each other with respect to exchanges of energy? If it is
so, the granular temperature has to be regarded just a
ensemble average of the kinetic energy of the grains, wh
may depend on the microscopic details and, therefore
spoiled of one of its most useful characteristics.

In the present paper we shall deal with such an is
through a simple model of granular mixture. To be mo
specific we shall describe a granular mixture by means o
model of the Maxwell type, i.e., a model characterized b
collision rate that is independent of the relative velocity
the colliding particles@4#. Such a class of models has i
justification in the case of elastic Maxwell molecules, i.
particles interacting via a soft repulsive pair potential of t
form r 122d. In the case of inelastic particles the consta
collision rate is just a matter of mathematical convenien
since it does not correspond to any known microscopic
teraction. In spite of that, it has been demonstrated by sev
authors@5–9#, that the cost of sacrificing physical realis
has been widely compensated by the amount of exact
lytical results and simplification even in the numerical tre
ment of the collision process. On the other hand, the r
©2002 The American Physical Society05-1
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question is, what are the physical consequences of the
stant collision rate on our predictions? Some of these
robust with respect to the choice of the model, others will
peculiar, as we shall discuss below. An interesting obse
tion is that the homogeneous cooling states of the Maxw
models and of more realistic models become quite simila
one measures the respective evolutions in terms of the n
ber of collisions occurred up to a given instant, while th
are very different in the presence of spatial inhomogenei
@8,10–12#. In the case of granular mixtures there is anoth
aspect that is robust with respect to the choice of the mo
namely, the existence of a two temperature behavior. In f
this has already been observed by Garzo´ and Dufty@13# in a
study of the cooling of a mixture based on the Enskog
proximation and experimentally by Feitosa and Menon@14#
in a mixture subject to external driving. The Maxwell sca
model, we shall study, also shows such a behavior, but of
the advantage that being considerably simpler than other
proaches, it provides a guidance to understand the gl
aspect of the problem.

Summarizing, the choice of the model is deliberate
minimalistic for the following three important reasons:~a!
the simplicity of the model allows us to write the exact ma
ter equation so that none of the results we find can be
cribed to a breakdown of some particular assumption e
ployed in its derivation;~b! most of the work can be
performed analytically and even the form of the asympto
solutions of the master equation can be estimated in clo
manner with a fairly good accuracy; and~c! our solutions can
be validated by simple simulations of the microscopic co
sion process.

Perhaps it is worth mentioning that as an unexpec
byproduct of our study we have found a rich variety of b
haviors of the velocity distributions as a function of the m
croscopic control parameters. The common feature of
these distributions is the presence of inverse-power-law h
velocity tails.

Incidentally, the observed inverse-power laws for the d
tributions are identical to those predicted by the nonext
sive statistical mechanics~NESM! approach@15,16#, that
apart from some exceptions still lacks dynamical foun
tions. An important point to stress is the fact that the o
served behavior derives from the solution of the Boltzma
transport equation for a system clearly inspired to the phy
of granular materials and already employed in the past,
not the result of assumptions about the form of the gene
ized entropy, as we shall see below.

The structure of the present paper is the following: in S
II we introduce the model, define the notation, and write
Boltzmann equation; in Sec. III we set up the moment
pansion and characterize by a granular temperature the
roscopic state of each component; Secs. IV and V, in wh
we discuss how the scaling solutions for the Boltzma
equation can be obtained, contain all technical details
Sec. VI we comment the connections between our results
the NESM approach; in Sec. VII we present our conclusio

II. DEFINITION OF THE MODEL

We shall consider an assembly ofN1 particles of species
1 andN2 particles of species 2 endowed with scalar velo
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a , with a51,2. The two species may have differe

masses,m1 and m2 and/or different restitution coefficient
r 11, r 22, wherer 125r 21.

The main assumptions of the model are:
~a! the forces are pairwise and impulsive, so that th

velocities change at each collision according to the follow
rule:

v i8
a5v i

a2@11r ab#
mb

ma1mb
~v i

a2v j
b!, ~1a!

v8 j
b5v j

b1@11r ab#
ma

ma1mb
~v i

a2v j
b!, ~1b!

~b! collisions involving simultaneously more than tw
particles are disregarded;

~c! within the spirit of mean-field models all pairs ar
allowed to exchange momentum regardless of their mu
positions.

In Eqs. ~1! the primed quantities are the postcollision
velocities and are a linear combination of the velocities
fore the collisions. The process conserves the number of
ticles of each species and the total impulseP
5(a51,2( i 51

Namav i
a .

To study the statistical behavior of the system we consi
the coupled equations for the velocity probability distributi
functions Pa(v,t), which give the probability density o
finding a particle of speciesa with velocity v at the instantt.
In the absence of driving forces we write the following tw
component Boltzmann equation:

] tPi~v1 ,t !5(
j 51

2 E dv2F 1

a
Pi~v19!Pj~v29!2Pi~v1!Pj~v2!G .

~2!

The system of Boltzmann equations~2! describes the evo
lution of the pair distribution function~PDF! of the velocities
in the case ofN1 andN2 going to infinity. From a rigorous
point of view correlations can appear in a finite system ev
if such a mean-field approach is employed.

Eliminating the precollisional velocitiesv19 ,v29 in favor of
the postcollisional velocities by means of Eq.~1! we obtain
the nonlinear system:

] tP1~v,t !52P1~v,t !

1
2p

11r 11
E du P1~u,t !P1S 2v2~12r 11!u

11r 11
,t D

1
~12p!

11r 12

m11m2

m2
E du P1~u,t !P2

3S m11m2

m2
v2S m1

m2
2r 12Du

11r 12
,tD , ~3a!
5-2
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MEAN-FIELD MODEL OF FREE-COOLING INELASTIC . . . PHYSICAL REVIEW E 65 051305
] tP2~v,t !52P2~v,t !

1
2~12p!

11r 22
E du P2~u,t !P2S 2v2~12r 22!u

11r 22
,t D

1
p

11r 12

m11m2

m1
E du P2~u,t !P1

3S m11m2

m1
v2S m2

m1
2r 12Du

11r 12
,tD . ~3b!

The generalization to many components is straightforwa
To proceed further, it is useful to employ the method

characteristic functions@5,7#, i.e., the Fourier transforms o
the probability densities defined as

P̂a~k,t !5E
2`

`

dveikvPa~v,t !. ~4!

The integral equations in Fourier space assume the m
convenient form:

] t P̂1~k,t !52 P̂1~k,t !1pP̂1~g11k,t !P̂1„~12g11!k,t…

1~12p!P̂1~ g̃12k,t !P̂2„~12g̃12!k,t…, ~5a!

] t P̂2~k,t !52 P̂2~k,t !1~12p!P̂2~g22k,t !P̂2„~12g22!k,t…

1pP̂2~ g̃21k,t !P̂1„~12g̃21!k,t…, ~5b!

wherep5N1 /(N11N2), z5m1 /m2, and

gab5
12r ab

2
, ~6a!

g̃125F12
2

11z
~12g12!G , ~6b!

g̃215F12
2

11z21
~12g12!G . ~6c!

Interestingly, a mixture of elastic particles of unequ
masses does equilibrate under the evolution rule~1!, unlike
the casez51. In fact, the solutions of Eq.~5! are the Gaus-
sianse2(a/ma)k2

, and in real space correspond to the Ma
wellian velocity distributions.

III. THE MOMENT EXPANSION OF THE DISTRIBUTION
FUNCTIONS

For finite inelasticity, let us tentatively assumeP̂a(k,t) to
be analytic at the origink50 and perform a Taylor expan
sion in powers ofk:

P̂a~k,t !5 (
n50

`
~ ik !n

n!
mn

(a)~ t !. ~7!
05130
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The coefficientmn
(a)(t) of ordern of the expansion repre

sents thenth moment of the distributionPa(v,t) according
to the definition in Eq.~4!. By substituting the Taylor expan
sion and equating coefficients, of powers ofk, to zero one
obtains a set of linear equations for the moments, which
be systematically solved. The moments of order zero
m0

(a)(t)51, due to the normalization ofPa(v,t), while those
of first order are solutions of the coupled linear equation

] tm1
(1)~ t !52~12p!~12g̃12!@m1

(1)2m1
(2)#, ~8a!

] tm1
(2)~ t !5p~12g̃21!@m1

(1)2m1
(2)#. ~8b!

The total impulseP5N@pm1m1
(1)1(12p)m2m1

(2)# is a
constant of motion and corresponds to the eigenvaluez1
50 associated with the Galilean invariance, of the line
system ~8!, whereas the negative eigenvaluez252(1
1r 12)$@m1p1(12p)m2#/(m11m2)%, describes the expo
nential lawe2z2t by which two subsystems 1 and 2 in rel
tive motion with respect to each other have the same ave
velocity.

The second order cumulants represent the most impor
statistical indicator of the state of a granular gas and
usually taken as the definition of partial granular tempe
tures. In order to study their evolution one has to solve
following coupled linear equations for the second momen

] tm2
(1)~ t !5d11

(2)m2
(1)1d12

(2)m2
(2) , ~9a!

] tm2
(2)~ t !5d21

(2)m2
(1)1d22

(2)m2
(2) , ~9b!

where the coefficients are given by

d11
(n)5211p@g11

n 1~12g11!
n#1~12p!@ g̃12#

n, ~10a!

d12
(n)5~12p!@~12g̃12!#

n, ~10b!

d22
(n)5211~12p!@g22

n 1~12g22!
n#1p@ g̃21#

n, ~10c!

d21
(n)5p@~12g̃21!#

n. ~10d!

The solution of the system~9! is a linear combination of
real exponentials, which can be expressed as

m2
(a)~ t !5Aael1t1Bael2t, ~11!

wherel1 andl2 are, respectively, the less negative and
more negative eigenvalues of the secular equation assoc
with the linear system~9!. Their computation is rather te
dious and due to the presence of many control parame
not particularly illuminating, apart from simple limiting
cases, for which one can extract useful information. For t
reason in most cases we shall give their values by solv
numerically the associated secular equation. An exampl
the dependence of the larger eigenvaluel1 from the control
parameters is shown in Fig. 1.

For vanishing first moments the global granular tempe
ture can be defined as
5-3
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UMBERTO MARINI BETTOLO MARCONI AND ANDREA PUGLISI PHYSICAL REVIEW E65 051305
Tg5pT11~12p!T2 , ~12!

whereTa5mama
(2)/2 represents the partial granular tempe

ture of speciesa.
Notice that in the limit of an elastic system~all gab50,

but arbitraryz andp) the eigenvaluel150 reflects the en-
ergy conservation. On the other hand, for nonvanishing
elasticity, i.e., values of12 >gab.0, the energy is dissipate
at a finite rate. Consider, for instance, an arbitrary comp
tion p, but gab5g and z51, a situation that describes th
approach to the scaling regime of two subsystems 1 an
initially prepared at two different initial granular temper
tures. One finds that the ‘‘energy’’ eigenvalue isl152g(g
21), while l252(12g2). To appreciate the role ofl2 let
us consider the ratio of the granular temperatures:

T1

T2
5z

A1

A2

11
B1

A1
e(l22l1)t

11
B2

A2
e(l22l1)t

. ~13!

Relation ~13! means that the resulting ‘‘thermalization
time, viz. the time spent to reach the homogeneous coo
regime is proportional tot5(l22l1)215(12g)22, i.e., is
related to the difference between the two eigenvalues
attains its maximum for the largest inelasticity (g51/2). The
asymptotic value of the temperature ratio is given by:

T1

T2
5z

~d11
(2)2d22

(2)!1A~d11
(2)2d22

(2)!214d12
(2)d21

(2)

2d21
(2)

. ~14!

It is clear from Eq.~14! that the two granular tempera
tures of the homogeneous cooling system are in general
ferent ~see Fig. 2! as already observed in the Enskog ha
sphere kinetic theory of Ref.@13#.

In the case of an equimolar mixture (p51/2) with equal
inelasticity parameters (gab5g), but arbitrary mass ratio the
temperature ratio is particularly simple:

FIG. 1. Maximum eigenvaluel1 of the coefficient matrix of Eq.
~9! for the evolution of the second moment, as a function of
mass ratioz. Different cases are shown for various choices of p
rameters,p and r 115r 225r 125r .
05130
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T1

T2
5

~z221!g1A~12z2!2g214~12g!2z2

2~12g!z
. ~15!

Notice that the second moment ratior5m2
(1)/m2

(2)

5T1 /zT2 approachesg/(12g) for z→` and (12g)/g for
z→0. For small departures from the valuez51 a good ap-
proximation is:

r.12
122g

12g
~z21!, ~16!

i.e., the temperature ratio increases linearly as a functionz
and deviates from the equipartition value 1 of an ideal g
mixture for nonvanishing values of the inelasticity parame
g. In Figs. 3 and 4 we display the moment ratio and t

e
-

FIG. 2. Plot of the average kinetic energy per particle ver
collision time. The two upper curves display the energies of sys
1 and system 2, respectively. Notice the initial growth of the av
age energy of the light species 2. The lowest curve represen
system, whose temperature ratio is 1.

FIG. 3. Asymptotic ratior5m2
(1)/m2

(2) of second moments, as
function of the mass ratioz, for different values of the inelasticity
parameterg115g225g125g5(12r )/2, wherer is the restitution
coefficient.p50.5 for all the curves. The perfectly inelastic ca
g51/2 corresponds to equal second moments for every value o
mass ratio.
5-4
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MEAN-FIELD MODEL OF FREE-COOLING INELASTIC . . . PHYSICAL REVIEW E 65 051305
temperature ratio, respectively, for different values of
mass ratio and of composition.

When one carries on the evaluation of higher-order m
ments one discovers the following phenomenon that is
symptom that the moment expansion is ill defined: the r
caled moments beyond that of orderm diverge, that is to say
the decay of themth moment is slower than that of th
(m/2)th power of the second moment. Ben-Naim a
Krapivski @7# found that in a pure system, such a pheno
enon occurs for all moments beyond the fourth. In oth
words the kurtosis of the velocity distribution diverges. Th
is the fingerprint of the presence of an inverse-power-law
in the velocity distribution function. The situation becam
clearer after the discovery of a scaling solution@8# as we
shall discuss below.

A simple check shows that the state of affairs remains
same in the case of a multicomponent mixture. To show t
we write the evolution equations for the fourth moments:

] tm4
(1)5d11

(4)m4
(1)1d12

(4)m4
(2)1a11~m2

(1)!21a12m2
(1)m2

(2) ,

~17a!

] tm4
(2)5d21

(4)m4
(1)1d22

(4)m4
(2)1a22~m2

(2)!21a21m2
(1)m2

(2) ,

~17b!

where the coefficientsaab are given by

a1156p@g11~12g11!#
2, ~18a!

a2256~12p!@g22~12g22!#
2, ~18b!

a1256~12p!@~12g̃12!#
2@ g̃12!]

2, ~18c!

a2156p@~12g̃21!#
2@ g̃21!]

2. ~18d!

We have explored the hypersurfacez51 of the five di-
mensional parameter spacegab ,p,z by randomly generating
the values of the coupling constantsgab and of the compo-

FIG. 4. RatioT1(`)/T2(`) between asymptotic temperatures
the two components of the mixture, as a function of the mass r
z, for different values of the inelasticity parameterg115g225g12

5g5(12r )/2, wherer is the restitution coefficient.p50.5 for all
the curves. The perfectly elastic case is the horizontal line
represents energy equipartition.
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sition p and computed the eigenvalues,L1 and L2, with
L1.L2, of the secular equation for the fourth momen
observing that the less negative eigenvalueL1 is larger than
twice the eigenvaluel1. This is equivalent to say that after
transient the rescaled fourth moment will begin to diverge
in the one-component case. Interestingly, forzÞ1 we ob-
served finite rescaled fourth moments. However, this f
does not imply that for such values of the parameters
moment expansion of the rescaled distribution holds to
orders. It only means that an analogous problem appears
higher order of the moment expansion, say at themth mo-
ment. We shall elaborate on such an issue in Sec. V.

IV. THE SCALING SOLUTION

A clue to understanding the divergence of the resca
higher moments came recently from the analysis of the p
case. An exact asymptotic scaling solution of the mas
equation~3! valid in the asymptotic regime has been fou
@8#. The merit of such an explicit solution is to show that t
characteristic function does not possess a moment expan
because of the presence of a nonanalyticity at the origik
50 as shown by its representation:

f „kv0~ t !…5e2v0uku~11v0uku!, ~19!

where limt→`P̂(k,t)5 f „kv0(t)… and v05Ae2g(g21)t is the
square root of the second moment.

To appreciate such a result one can return to real velo
space where the distribution space is of the form

PsS v
v0~ t ! D5

2

p

1

v0

1

F11S v
v0

D 2G2 , ~20!

and the moment beyond the third diverge is due to the p
ence of the inverse-powerv24 tail. In fact, it is a general
principle that when a singularity of the function ink space
approaches the real axis the behavior of the largev compo-
nents of its Fourier transform turns from exponential
power law@17,18#.

An immediate check shows that in the two-compone
case the above formula fails to provide the correct solut
of the master equation, with the exception of some spe
cases, which correspond to a ratio of the second mom
equal to 1.

Let us stress the importance of scaling solutions in
cooling of an inelastic gas. Their existence means that
distribution is fully characterized by its second moment a
is self similar, i.e., asymptotically its shape does not cha
apart from a trivial rescaling. Moreover, it demonstrates t
in the cooling problem the distribution functions do not loo
at all like the distribution functions of an elastic system
which have an infinite number of nondiverging momen
The change induced by the presence of inelasticity is a
gular perturbation, viz. an abrupt qualitative modification
the statistical properties of the systems.

Do scaling solutions exist in the case of binary mixture
To answer such a question let us assume that for a con

io

at
5-5
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UMBERTO MARINI BETTOLO MARCONI AND ANDREA PUGLISI PHYSICAL REVIEW E65 051305
cooling rate there exists a scaling solution of the fo
P̂a(k,t)5 f a@m2

(a)(t)k2#. This implies that the master equa

tion for P̂ can be converted into a differential equation w
respect to the independent variablek with time independent
coefficients. In the one-component case it can be cast in
form:

2ak]kP̂~k!1 P̂~k!2 P̂~gk!P„~12g!k…50, ~21!

with a being a constant. Equation~21! displays the presenc
of a regular singular point at the origin,k50. Therefore, we
look for a particular solution of the form:

y~k!5ksR~k!,

where s is the so called indicial exponent andR(k) is a
function that is analytic atk50, whose value can be dete
mined by the Frobenius method@19#, that provides a system
atic tool to compute the solution as a power series ofk with
noninteger exponents. IfR(k) is analytic one can write:

y~k!5ks (
n50

`

ankn.

However, instead of employing the general method
found it more convenient to extend to the two-compon
case the abridged version employed by Ernst and Brito
ascertain the nature of the high-velocity tails of the distrib
tions @9,20#. Their technique replaces the small-k Frobenius
expansion with its first few terms that contain a contributi
nonanalytic at the origin and determining self-consisten
the indicial exponent. We assume that the leading singu
ties of the Fourier transforms are of the form

P̂a~k,t !512
1

2
m2

(a)~ t !k21@m2
(a)~ t !Sauku2#s/2

1@m2
(a)~ t !#2Qak4, ~22!

with exponents and amplitudesQa andSa to be determined
by substituting the above approximation into the mas
equation. The reason for keeping the fourth term will beco
clear below. Notice that the first two terms in Eq.~22! are
fixed, respectively, by the normalization condition and by
variance of the distribution. In fact, up to the second ord
Eq. ~22! is analytic and identical to the Taylor expansion~7!.

Substituting Eq.~22! into Eqs.~3! and equating the like
powers ofk we obtain the following set of coupled equ
tions:

S1@] t112p„g11
s 1~12g11!

s
…2~12p!ug̃12us#~m2

(1)!s/2

2S2@~12p!u12g̃12us#~m2
(2)!s/250, ~23a!

S2@] t112~12p!„g22
s 1~12g22!

s
…2pug̃21us#~m2

(2)!s/2

2S1@pu12g̃21us#~m2
(1)!s/250. ~23b!

To proceed further, we notice that for times much long
than the thermalization time we can safely approximate
05130
he

e
t

to
-

y
ri-

r
e

e
r,

r
e

second moments with their projection along the eigenvec
corresponding to the larger eigenvalue. Doing so the E
~23! reduce to a homogeneous system for the variablesSa .
Only in correspondence of special values of the exponens
the determinant of the coefficients is zero and there e
nonvanishing solutions. In other words we are requiring
solvability condition. The resulting indicial equation
highly nonlinear in the unknowns, but its numerical solu-
tion is straightforward. It reads

Fs2 l1112p@g11
s 1~12g11!

s#2~12p!ug̃12usG
3Fs2 l1112~12p!@g22

s 1~12g22!
s#2pug̃21usG

2p~12p!u12g̃12usu12g̃21us50. ~24!

We observe that Eq.~24! has always two solutionss50
ands52 for any choice of the parametersga,b , z, andp.
In fact, these two values correspond to the zeroth and sec
moment. The nontrivial values.2 represents the indicia
exponent associated with the singularity. Somehow surp
ingly, we find that such a value ofs is distributed continu-
ously in the interval 2,s,3 as a function of the contro
parameters. In other words it means that the inverse-pow
law tails of the distribution are sensitive to the compositi
and to the nature of the interactions in the mixture. We ha
not found any simple dependence of the exponents on the
control parameters. Nevertheless, for small asymmetry
observe thats seems to deviate from the exponents53 of
the pure system quadratically with the temperature ratio.

Knowing just the first three terms of the series~22!, apart
from the value of the constantS15S2, which is still at our
disposal, we make the hypothesis that they represent
truncation of the expansion of the following characteris
function:

P̂a~kba!5
2

G~n! S kba

2 D n

Kn~kba!, ~25!

wheren5s/2 andKn(z) is the modified Bessel function o
the second kind of ordern. To render the matter clearer w
employ the following Frobenius series representation@21#:

2

G~n! S kba

2 D n

Kn~kba!5
2

G~n!

p

sin~pn! (
n50

` S kba

2 D 2n

n!

3F 1

G~n112n!
2

S kba

2 D 2n

G~n111n!
G ,

~26!

considering just the first few terms
5-6
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MEAN-FIELD MODEL OF FREE-COOLING INELASTIC . . . PHYSICAL REVIEW E 65 051305
P̂a~kba!.12
1

~n21! S kba

2 D 2

2S kba

2 D 2n G~12n!

G~11n!

1S kba

2 D 4 G~12n!

2G~32n!
. ~27!

Thus one can see that the first terms of the series~22! and
~26! have the same exponents. Therefore, by suitably ch
ing the coefficients of Eq.~22! we can obtain the Besse
function. In reality, we do so because we are led by
solution of the pure case, which corresponds ton53/2. In-
serting such a value and employing the following asympto
expansion~for z.0),

K3/2~z!5Ap

2z
e2z~11z21!,

after substitution in Eq.~25! we obtain the solution~19!.
If we insist that the identification between the series~22!

and the modified Bessel function hold for arbitraryn we
obtain by Fourier transforming Eq.~26! the following ap-
proximation to the distribution function@22#:

PaS v
va~ t ! D5E

2`

` dk

2p
e2 ikvP̂a~kba!

5E
2`

` dk

2p
e2 ikv

2

G~n! S kba

2 D n

Kn~kba!,

~28!

i.e.,

PaS v
va~ t ! D5

1

baAp

GS n1
1

2D
G~n!

1

F11S v

ba
2 D 2G n11/2,

~29!

whereva
25ba

2/@2(n21)# represents the second moment.
Such an approximate form clearly displays the inver

power-law tails with the characteristic exponents1152n
11. For a pure system sinces→3 it reduces to the known
solution@8#. Numerically we found that such an approxim
tion gives excellent results with an error that is compati
with the uncertainty of the numerical data as shown in Fig
Notice that the indicial equation does not give the value
Sa , but this has been fixed by our ansatz~25!. On the other
hand we might ask how good is the ansatz. To clarify such
issue we substitute the expansion~22! into the scaling form
of the master equation and find two linear inhomogene
algebraic equations for the two unknownQ1 andQ2. With-
out giving all the details we notice that these equations h
certainly nonzero solutions in virtue of the fact observ
above,~17! that the eigenvalues of the fourth moment is n
twice the eigenvalues of the of the second moment. The
merical solution of the linear system gives two values of
Q’s which in general are different (Q1ÞQ2) for nonspecial
values of the parameters, hence the ansatz represents on
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approximation. The consequences of this small discrepa
are probably of minor importance for the cases considere
the present section. The deviation of the true series from
series representation of the approximate solution mi
manifest itself in a small asymmetry in the two rescaled d
tribution functions, and this might involve the region o
small values ofv. In principle, there exist the possibility o
constructing a better solution via the Frobenius meth
However, we believe that one could hardly find a clos
form of the distribution functions via an inverse Fouri
transform of simplicity comparable to that of Eq.~19!. Fi-
nally, let us remark that the fairly good agreement betwe
our approximation and the numerically computed solut
stems from the fact that the form we propose embodies
only the three following basic ingredients:~i! the normaliza-
tion condition,~ii ! the correct value of the variance, and~iii !
the appropriate tails of the distributions, but also some pr
erties of the exact distribution, which one can guess on
basis of pure physical reasoning. These properties are
Pa(v) is symmetric with respect tov, is monotonically de-
creasing forv.0, and is smooth. Such assumptions hug
restrict the class of all possible candidate distributions co
patible with the first few terms of the expansion. In practic
we match the small-k behavior with the smallr behavior,
which is equivalent to the largek behavior.

V. HIGHER-ORDER SINGULARITIES

So far we have employed the approximate expansion~22!
and found that on the hypersurfacez51 the indicial expo-
nents lies in the continuous interval 2,s<3. Correspond-
ingly, the distributions possess finite second moments,
diverging fourth moments. On the other hand forzÞ1 as
anticipated in Sec. III it is possible to observe different kin
of behaviors. The feature that makes the difference is w

FIG. 5. Rescaled asymptotic velocity distributions from nume
cal simulations of the model with mass ratioz51 and different
values of the restitution coefficients. In the inset the whole dis
butions are shown, in the main graph the tails are magnified
log-log scale, and fitted with an inverse power law. The predictio
obtained by solving the indicial equation ares523.86 for the
upper curve ands523.21 for the lower curve.
5-7
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might be called the ‘‘isotopic effect,’’ i.e., induced solely b
the difference of masses in a binary mixture of particl
otherwise identical. One observes the following pheno
enon: all rescaled momentsms

(a)/(m2
(a))s/2 up to themth or-

der are asymptotically finite, but diverge beyondm.
This is indicative of solutions characterized by very lar

values ofs. In other words, the allowed interval of values
s is expanded. This physically means that the exponens
evolves from a pronounced inverse power law to a Gauss
like behavior asz deviates from unity. Of course, the cros
over from one regime to the other is determined by the
elasticity and by the mass ratio in the first place, but
value of the exponent does not depend on any simple
from the control parameters.

Numerically we have considered different coupling p
rameters and obtained the results shown in Fig. 6 show
the trend that the exponent of the tails increases with
creasing inelasticity and with the differenceuz21u.

In Fig. 7 we have plotted the distributions obtained w
different values ofz, showing the change of the exponent
the tails with z. We must stress the difficulty of obtainin
clear numerical results for the exponents of the power-
tails in the case of large values of the singularitys ~or of the
absolute value of the exponent itself, which iss11). In fact,
high inverse-power-law tails need far larger statistics to
appreciated; moreover, it appears~numerically! that for large
~negative! values of the expected power, the tail appears la
in the v/v0 domain. This means that with a finite statisti
one can measure powers smaller, in absolute value,
those expected from the analysis of indicial equations. T
phenomena has been observed also in Ref.@9#.

To simplify the analysis, let us consider first the mas
equation for large values ofz and equal inelasticity param
eters. One sees that asz→` the first equation for the distri
bution P1 is asymptotically decoupled fromP2.

lim
z→`

g̃1251, ~30a!

lim
z→`

g̃2152g21. ~30b!

FIG. 6. Power of the singularitys of the solution of the coupled
master equations for the model, as a function of the mass ratz
and the inelasticity parameterg115g225g125g5(2r )/2, with r
the restitution coefficient, withp50.5.
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For small inelasticityg, the quantityg̃21 is negative as if
the restitution coefficient for the collision~2-1! were larger
than one, while 12g̃1250. Under such conditions, the equ
tion for the distribution function of species 1 becomes effe
tively decoupled from species 2 as it can be appreciated
substituting Eqs.~30a! and ~30b! in Eq. ~5!:

] t P̂1~k,t !52 P̂1~k,t !1pP̂1~gk,t !P̂1„~12g!k,t…

1~12p!P̂1~k,t !P̂2~0,t !. ~31!

Taking into account the fact thatP̂2(0,t)51 one recog-
nizes immediately the equation for the PDF of a pure syst
i.e., of the form given by Eq.~20!. The decay rate of the
energy is given byl152g(g21)p. What happens to the
light component? Within this limit the evolution equation fo
P̂2(k,t) looks very different from that ofP̂1(k,t). In fact, the
numerical solutions indicate the existence of tails with ve
large values ofs. How can we find this value of the expo
nent, knowing that the tails of the species 1 diverge asv24?
The trick is to substitute in Eq.~5b! the expansion~22! and
neglect the contribution stemming fromP̂1(k,t) because it
corresponds to another degree of singularity. At the end
obtains the new indicial equation:

2g~g21!p
s2

2
112~12p!@gs21~12g!s2#

1pu122gus250, ~32!

which for small values ofg has a solutions2.1/@pg(1
2g)#. That is to say for a quasielastic system the expon
of the singularity diverges and all moments exist. To und
stand such a result we can reconsider the rule~1! and see that

FIG. 7. Tails of the rescaled asymptotic velocity distributio
from numerical simulations of the model with number ratiop
50.5 and different values of the restitution coefficients and of
mass ratioz. The pure casez51 has the exact asymptotic solutio
P(x)5(2/p)(11x2)22;x24. The Gaussian is shown as a guid
for the eye.
5-8



er
ie
w

an
h

les

lue

a

ro

th

h
ct
-

en

the
a-
ms

rrect

ted
c-
ter

by

s
of
xed

ple
ves
n.
an
m

ul

nc
th

of
-
The

MEAN-FIELD MODEL OF FREE-COOLING INELASTIC . . . PHYSICAL REVIEW E 65 051305
for z→` the collisions between unlike particles neith
change the energy nor the velocity of the heavy spec
whereas it changes the velocity of particles 2 in the follo
ing way:

v8 i
(2)5v i

(2)1z~v j
(1)2v i

(2)!, ~33!

i.e., the species 1 acts on 2 as a stochastic noise, sincev (1) is
randomly distributed according toP1(v,t). Such a phenom-
enon is peculiar of the inelastic system under scrutiny
represents a sort of ‘‘reversed Brownian’’ motion in whic
the heavy particles act as a heat bath for the light partic

In the case of finitez we have solved the indicial Eq.~24!
and constructed the curves shown in Fig. 8. For small va
of the inelasticityg the surface raises steeply asz departs
from 1, attains a maximum and then decreases again re
ing the asymptotic values53 for very large values ofz, as
predicted by our asymptotic analysis~see Fig. 6!. For larger
values of the inelasticity such isotopic effect is less p
nounced. This reentrant behavior ofs with z is mirrored by
an analogous behavior of the rescaled moments~Fig. 9!.

To conclude, we remark that for large values ofn the
coefficients of the series expansion in powers ofv of order
n,n are very close to the corresponding coefficients of
series expansion of the Gaussian, and only forn.n the
power-law behavior of the tails becomes manifested. T
means that numerically it might be very difficult to dete
such a region. Finally for largen, which correspond to elas
tic systems, one recovers the Gaussian distribution:

FIG. 8. Indicial exponentss, s1, ands2 of the singularity of
the solutions of the coupled master equations~5! and of the singu-
larities of the solutions of the noncoupled master equations~31! and
~32!, respectively, as functions of the mass ratioz. The squares and
circles refer to the exponents obtained from the numerical sim
tions ~to be compared withs1 ands2, respectively!. The discrep-
ancy with the theoretical predictions is due to the slow converge
for larges ’s, of the tails to the asymptotic value, as discussed in
text.
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1

baAp

GS n1
1

2D
G~n!

1

F11S v

ba
2 D 2G n1(1/2)

5
1

A2p

1

v0
e2v2/2v0

2
. ~34!

The reentrance phenomenon of the exponents deserves a
comment. In fact, we have seen thats controls the tails of
the distribution of the heavy component only. In fact, ev
for z to be finite, but larger than some valuezcr , one ob-
serves a bifurcation of the exponents. Forz>zcr the expo-
nent of the heavy component begins to be different from
exponent of the light component. Therefore, our approxim
tion of assuming the same indicial value for both subsyste
becomes untenable. Nevertheless, we can find the co
values of the exponentss1 ands2, by considering that there
is no interference between the two singularities associa
with ks1 andks2 and, therefore, we get two decoupled indi
ial equations. The resulting scenario is quite intriguing. Af
the bifurcation we have two separate trajectories obtained
drawing the values ofs1 ands2 againstz. Correspondingly,
the probability distribution functions of the two subsystem
belong to two different critical hypersurfaces. In the limit
g→0 one subsystem flows to the Gaussian elastic fi
point, the other flows to the inelastic fixed point.

VI. RELATION TO NONEXTENSIVE STATISTICAL
MECHANICS

We have discussed the cooling behavior of a sim
model of granular material and found that the process gi
rise to scaling forms of the probability distribution functio
Somehow surprisingly, the distribution function has
inverse-power-law decay for large velocities of the for

a-

e,
e

FIG. 9. Plot of the rescaled velocity distributions in the case
a large mass ratioz510 000. In the inset the two velocity distribu
tions are shown, whereas in the figure the tails are displayed.
tails are characterized by a different inverse power law.
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v2s21 with an exponents that depends in a nontrivial fash
ion on the various control parameters and can vary in
interval 2,s,` in a continuous way. It is an intriguing fac
that such inverse-power-law-like behavior looks undenia
similar to that emerging in the context of the so called no
extensive statistical mechanics@15#. To the best of our
knowledge, no other model of comparable simplicity to t
present yields similar laws@23# as a result of a dynamica
process. We stress again that none of our results has
derived from assumptions about the functional form o
generalized entropy and an associated maximum ent
principle. Our results follow from a completely independe
approach, namely, the exact treatment of inelastic collisi
based on the master equation.

Classically the temperature, besides being the averag
the kinetic energy, is also the intensive thermodynamic fi
conjugated to the entropy and the latter in turn is related
the distribution function. This is not the case of the granu
temperature, which does not possess a definition via the
tropic route, but only via the kinetic route. In NESM, in
stead, one defines a generalized entropy,

Sq5
1

q21 S 12(
i

pi
qD ,

where thepi are the probabilities associated with the m
crostatesi of the system. Therefore,Sq does not have a
unique expression as in the classical physics, but varies
the exponentq connected tos by the relation:

q511
2

s11
.

ThusSq would be a function of the various couplings
the particular system under scrutiny.

Summarizing, although the NESM is capable to yield o
results, it does not provide the value of the exponentq so that
one needs an independent procedure to obtain it and com
the appropriateq entropy. This nonuniversality of theq ex-
ponent means that one would need aq entropy for each par-
ticular mixture. Finally, a challenging situation for which w
do not know the answer within the NESM, is the one
spired by the results of Sec. V, where the two component
the mixture are characterized by different power-law ta
even within the same ‘‘experiment’’ one has to resort to t
different q entropies.

This state of affairs is just the result of the absence of
zeroth law of thermodynamics for granular systems, i.e.,
fact that one needs a different thermometer for each part
lar granular mixture.

Let us anticipate that in the case of a homogeneou
heated granular system our model still predicts a two te
perature behavior under rather general conditions, but w
the partial temperatures not varying in time@24,25#. On the
other hand, the velocity distribution function will not sho
any power-law tails, but will be very similar to the Gaussia
and possess all finite moments. Thus, the power-law be
ior is a peculiarity of the cooling process and not a neces
of nonextensivity, at least as far as our model is concern
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VII. CONCLUSIONS

We have seen that the Maxwell inelastic mixture displa
a continuous spectrum of exponents characterizing
inverse-power-law tails of the velocity distribution function
The previously found solution of the pure systemp51 with
tail exponents1154 can now be regarded as a spec
case. In fact, a whole spectrum of exponents extending f
3 to ` exists. A natural question to ask is why the observ
exponents deviates from the value of the pure system. T
naive guess is that, since in the pure case the solution~19!
shows the remarkable feature that its functional form is
dependent of the cooling rate, i.e., of the microscopic ine
ticity parameterg and that the tails decay invariably asv24,
the same should be true in the case of a mixture of parti
characterized by different restitution coefficients. On t
contrary, in the mixture case thes exponent varies with the
microscopic parameters. Both these contrasting aspe
namely, a single value of the exponent for the pure mo
and a continuous spectrum of values for the mixture re
the renormalization group theory of critical phenomen
where critical systems having different Hamiltonians~viz.
differentg ’s in our pure case! in the neighborhood of a fixed
point share the same exponents. That is to say that the
lution drives all systems belonging to the same critical~hy-
per!surface towards a common fixed point. This is why
pure systems exhibit identical asymptotic behaviors in sp
of having different inelasticity parameterg @26#. On the
other hand, mixtures correspond to systems whose trajec
lies on a hypersurface whose points are attracted towar
fixed point characterized bysÞ3, because of the presenc
of other scaling fields.

The model can also be viewed as a quench realized
dering suddenly inelastic an initially elastic system. The s
sequent cooling process takes the distribution from its ela
Gaussian fixed point to the zero temperature fixed point. T
trajectory along which this process occurs is characterized
peculiar values of the distributions. The scaling behavio
associated with the dynamics of the approach to the fi
point.

Why is the scaling solution selected? Let us make
following observation: if we consider a mixture with a larg
number of identical components, the mixture formalism
lows us to describe independently the evolution of differe
subsystems. The associated secular equation forM compo-
nents will haveM eigenvalues,M21 of them corresponding
to the faster modes. The scaling solution corresponds to
slowest mode and is therefore stable, with respect to fluc
tions.

Due to the mean-field nature of the model the fluctuatio
of a given portion of the system can influence all other e
ments, i.e., are very long ranged. In a more realistic desc
tion of the inelastic interaction the scenario illustrated abo
will not survive asymptotically, because of the onset of sp
tial fluctuations, i.e., of correlations that tend to erode
high-velocity tails. These tails, on the other hand, might
main observable during the homogeneous cooling regime
will cease after the formation of spatial gradients in the s
tem @11#.
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