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We consider a mean-field model describing the free-cooling process of a two-component granular mixture,
a generalization of the so called scalar Maxwell model. The cooling is viewed as an ordering process and the
scaling behavior is attributed to the presence of an attractive fixed pairit @tfor the dynamics. By means
of asymptotic analysis of the Boltzmann equation and of numerical simulations we get the following results:
(1) we establish the existence of two different partial granular temperatures, one for each component, which
violates the zeroth law of thermodynami¢8) we obtain the scaling form of the two distribution functio(®;
we prove the existence of a continuous spectrum of exponents characterizing the inverse-power-law decay of
the tails of the velocity, which generalizes the previously reported value of 4 for the pure rtdek find
that the exponents depend on the composition, masses, and restitution coefficients of the (Bjxiveealso
remark that the reported distributions represent a dynamical realization of those predicted by the nonextensive
statistical mechanics, in spite of the fact that ours stem from a purely dynamical approach.
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[. INTRODUCTION consensus that granular materials do not achieve a proper
thermodynamic equilibrium. Hence, even if the temperature
One of the basic principles over which the thermodynam-of a granular assembly can be suitably defined, it does not
ics is built derives from the simple observation that whenhave the properties required by standard thermodynamics, as
two systemsA and B are brought together so that they canwe shall discuss below. We shall not digress on some inter-
exchange energyor in thermal contagt after some time esting recent proposals aimed to define the temperature of
they reach a mutual macroscopic equilibrium state in thegranular packing$2], which is a measure of the potential
absence of energy sources, i.e., their temperatures becorasergy landscape, but we shall confine our attention to dilute
equal. A second observation is that the thermal equilibriunsystems of granular particles, where the term granular tem-
between a third systei@ and A implies the thermal equilib- perature, defined exactly in the same way as in ordinary
rium betweerB andC. These two facts, which represent the gases, i.e., as the average of the kinetic energy per particle,
content of the zeroth law of thermodynamics, give sense thias been coinef8]. How far pursue such an analogy? Is the
the concept of temperature and allow us to build thermomgranular temperature a common feature of all granular gases
eterg[1]. The simplest state of aggregation of matter, namelyjn mutual equilibrium, i.e., the quantity that has the role of
the gaseous state, offers a neat example of the validity adetermining if two system are in equilibrium with respect to
such a principle. When in equilibrium the state of a mixtureeach other with respect to exchanges of energy? If it is not
of different gases is characterized by a single temperatureso, the granular temperature has to be regarded just as an
i.e., every species has the same average kinetic energy pensemble average of the kinetic energy of the grains, which
particle regardless its molecular nature. may depend on the microscopic details and, therefore, is
An interesting question related to the zeroth law arisespoiled of one of its most useful characteristics.
quite naturally when we consider the behavior of granular In the present paper we shall deal with such an issue
gases, as the assemblies of moving grains at low density atbrough a simple model of granular mixture. To be more
usually called. More in general, granular matter represents specific we shall describe a granular mixture by means of a
relatively new and unexplored area of research that has atrodel of the Maxwell type, i.e., a model characterized by a
tracted the attention of physicists. Just like ordinary matteicollision rate that is independent of the relative velocity of
granular matter may appear under different guises: solidlikéhe colliding particled4]. Such a class of models has its
or dense aggregates of particles where the motion of its conustification in the case of elastic Maxwell molecules, i.e.,
stituents is negligible, liquidlike when a dense aggregatearticles interacting via a soft repulsive pair potential of the
flows, and as a gas when the mutual distances between graifem r1 =29, In the case of inelastic particles the constant
are larger that their typical linear size. Of course, such aollision rate is just a matter of mathematical convenience,
classification is empirical but quite loose, since we are nosince it does not correspond to any known microscopic in-
allowed to employ concepts such as thermodynamic phasetgraction. In spite of that, it has been demonstrated by several
in fact granular matter does not fall into the realm of ther-authors[5-9], that the cost of sacrificing physical realism
modynamics. In other words, only if we are able to show thathas been widely compensated by the amount of exact ana-
the basic laws of thermodynamics work in the case of granulytical results and simplification even in the numerical treat-
lar materials we can employ its results. There is an emergingent of the collision process. On the other hand, the real
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question is, what are the physical consequences of the coties v{*, with «=1,2. The two species may have different
stant collision rate on our predictions? Some of these argnassesm; and m, and/or different restitution coefficients
robust with respect to the choice of the model, others will be |, 1., wherer,=r,,.

peculiar, as we shall discuss below. An interesting observa- The main assumptions of the model are:

tion is that the homogeneous cooling states of the Maxwell (a) the forces are pairwise and impulsive, so that their

models and of more realistic models become quite similar i g|ocities change at each collision according to the following
one measures the respective evolutions in terms of the nun; e

ber of collisions occurred up to a given instant, while they

are very different in the presence of spatial inhomogeneities

[8,10—13. In the case of granular mixtures there is another e B «_ B

aspect that is robust with respect to the choice of the model, Ui T —[1+fa5]m(vi —up), (1a)

namely, the existence of a two temperature behavior. In fact, « F

this has already been observed by Gaard Dufty[13] in a

study of the cooling of a mixture based on the Enskog ap- , m, N

proximation and experimentally by Feitosa and Mefhb#| v Jﬁ:"iﬂﬂlﬂaﬁ]m(vi —uf), (1b)

in a mixture subject to external driving. The Maxwell scalar o F

model, we shall study, also shows such a behavior, but offers

the advantage that being considerably simpler than other ap- (b) collisions involving simultaneously more than two

proaches, it provides a guidance to understand the glob#articles are disregarded,

aspect of the problem. (c) within the spirit of mean-field models all pairs are
Summarizing, the choice of the model is deliberatelyallowed to exchange momentum regardless of their mutual

minimalistic for the following three important reasons)  positions.

the simplicity of the model allows us to write the exact mas- In Egs. (1) the primed quantities are the postcollisional

ter equation so that none of the results we find can be asrelocities and are a linear combination of the velocities be-

cribed to a breakdown of some particular assumption emfore the collisions. The process conserves the number of par-

ployed in its derivation;(b) most of the work can be ticles of each species and the total impulsd

performed analytically and even the form of the asymptOtiCZEazl22i:1Namana-

solutions of the master equation can be estimated in closed g stydy the statistical behavior of the system we consider

manner with a fairly good accuracy; afl our solutions can the coupled equations for the velocity probability distribution

b_e validated by simple simulations of the microscopic colli-f,ctions P.(v,t), which give the probability density of

SIon process. finding a particle of species with velocity v at the instant.

Perhaps it is worth mentioning that as an unexpecteq, the apsence of driving forces we write the following two
byproduct of our study we have found a rich variety of be'component Boltzmann equation:

haviors of the velocity distributions as a function of the mi-

croscopic control parameters. The common feature of all )

these distributions is the presence of inverse-power-law high 1 " .

Ve|0city tails. atPi(vlat):jgl dv2 ;Pi(vl)Pj(UZ)_Pi(vl)Pj(UZ) .
Incidentally, the observed inverse-power laws for the dis- 2

tributions are identical to those predicted by the nonexten-

sive statistical mechanic€NESM) approach[15,16, that . .
apart from some exceptions still lacks dynamical founda- | "€ System of Boltzmann equatiof® describes the evo-

tions. An important point to stress is the fact that the 0b_!ution of the pair distribution functiofPDF) of the velocities

served behavior derives from the solution of the Boltzmand" the case oN, andN; going to infinity. From a rigorous
transport equation for a system clearly inspired to the physicB0Int Of view correlations can appear in a finite system even
of granular materials and already employed in the past, anti SUch @ mean-field approach is employed.

/!

not the result of assumptions about the form of the general- Eliminating the precollisional velocities; ,v3 in favor of

ized entropy, as we shall see below. the postcollisional velocities by means of Ed) we obtain
The structure of the present paper is the following: in Secthe nonlinear system:

[l we introduce the model, define the notation, and write the

BoItzmann equation; in Sec. lIl we set up the moment ex- 4P, (v,t)=—P;(v,t)

pansion and characterize by a granular temperature the mac-

roscopic state of each component; Secs. IV and V, in which n du P,(u,t)P 2v—(1-rypu ;
we discuss how the scaling solutions for the Boltzmann 1471y, 1(UDPy 1+ry,
equation can be obtained, contain all technical details; in
Sec. VI we comment the connections between our results and (1-p) m+ mzf du Py(u,0)P
the NESM approach; in Sec. VIl we present our conclusions. 1+ry, my E
II. DEFINITION OF THE MODEL m;+m; (ml r )u
[Ca e 5 ]
We shall consider an assembly Mf particles of species % m, m, ], (33
1 andN, particles of species 2 endowed with scalar veloci- 141y,
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&tpz(l},t):_Pz(l},t)
2(1-p) v—(1=rxpu
1+r fdu PZ(U t)Pz(l'f'—l'zz’t
p my
i1y, J’ du Py(u,t)P,
m;+m, my
m U_<H_r12)u
1 1
X 1rro, t (3b)

The generalization to many components is straightforward.
To proceed further, it is useful to employ the method of
the Fourier transforms of

characteristic functiongs,7], i.e.,
the probability densities defined as

P.(k,t)= fldveik”Pa(v,t). 4

PHYSICAL REVIEW E 65 051305

The coefﬁcienwff’)(t) of ordern of the expansion repre-
sents thenth moment of the distributio? ,(v,t) according
to the definition in Eq(4). By substituting the Taylor expan-
sion and equating coefficients, of powerskpfto zero one
obtains a set of linear equations for the moments, which can
be systematically solved. The moments of order zero are
w{(t)=1, due to the normalization &,(v,t), while those
of first order are solutions of the coupled linear equations:

apP)=—(1-p L=y [ pP-p?], (83

(1) =p(1 =y uiV = w1, (8b)
The total impulsell=N[pm;u{Y+(1—p)mu{?] is a
constant of motion and corresponds to the eigenvalue
=0 associated with the Galilean invariance, of the linear
system (8), whereas the negative eigenvalm=—(1
+r9){[mp+(1-p)my]/(m;+my,)}, describes the expo-
nential lawe™ %' by which two subsystems 1 and 2 in rela-
tive motion with respect to each other have the same average

The integral equations in Fourier space assume the MOKSs|ocity.

convenient form:

3P 1(K,t)=—P1(K,t) + pPy( 711K, t) P1((1— y11k,1)

+(1—-p)P1(y1K DPo(1=y10)k,t), (58

GP (K1) = = Po(k,t) + (1= p)Po( vk, 1) Po((1— 20K, 1)
+PPo(Y21k, )P (1= Y20k, 1), (5b)
wherep=N;/(N;+N,), {=m;/m,, and
1-r,
Yag= g (6a
3’12:[1—@(1—7’12)}- (6b)
Yar=| 1 | (60)

The second order cumulants represent the most important
statistical indicator of the state of a granular gas and are
usually taken as the definition of partial granular tempera-
tures. In order to study their evolution one has to solve the
following coupled linear equations for the second moments:

puO=dRuaBu?, 0

s () = dE pf) + Pl (9b)
where the coefficients are given by

d{Y= =1+ p[yi+ (1= y2)" ]+ (1= p)[ y1]", (109

di?=(1-p)[ (1= 721", (10b

dfY = =1+ (1= p)[ Yoo+ (1= 722"+ p[ y21]", (100

dY =pl(1=y)]". (10d

The solution of the syster®) is a linear combination of

Interestingly, a mixture of elastic particles of unequalreal exponentials, which can be expressed as

masses does equilibrate under the evolution (Uje unlike
the case’=1. In fact, the solutions of Ed5) are the Gaus-

sianse™ (@/ma)k’
wellian velocity distributions.

IIl. THE MOMENT EXPANSION OF THE DISTRIBUTION
FUNCTIONS

For finite inelasticity, let us tentatively assurﬁg(k,t) to

be analytic at the origitk=0 and perform a Taylor expan-

sion in powers ok:

(ik) i), )

Pa(k,t)=
n=0

, and in real space correspond to the Max-

wSI(t) =AM+ B e, (11)
where\; and\, are, respectively, the less negative and the
more negative eigenvalues of the secular equation associated
with the linear systen{9). Their computation is rather te-
dious and due to the presence of many control parameters
not particularly illuminating, apart from simple limiting
cases, for which one can extract useful information. For this
reason in most cases we shall give their values by solving
numerically the associated secular equation. An example of
the dependence of the larger eigenvalyefrom the control
parameters is shown in Fig. 1.

For vanishing first moments the global granular tempera-
ture can be defined as
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FIG. 1. Maximum eigenvaluk, of the coefficient matrix of Eq. FIG. 2. Plot of the average kinetic energy per particle versus

(9) for the evolution of the second moment, as a function of thecollision time. The two upper curves display the energies of system

mass ratioZ. Different cases are shown for various choices of pa—l and system 2, respectively. Notice the initial growth of the aver-
rametersp andryy=r,="rq,,=r. age energy of the light species 2. The lowest curve represents a

system, whose temperature ratio is 1.

T,=pT1+(1—p)T>, (12
P P Ty (P-Dy+ (1= +4(1- 9%
whereT ,= ma,uff)lz represents the partial granular tempera- T_2 - 2(1—y)¢ - (19
ture of species.
Notice that in the limit of an elastic systetall y,z=0, Notice that the second moment ratip=u§/u®

but arbitrary{ a_nd p) the eigenvalue.;=0 reflects the en-  —T./¢T, approaches/(1— v) for = and (1— )/ for
ergy _cpns_ervatlon. On the other hand, for no_nvgms_hmg N7 0. For small departures from the valge:1 a good ap-
elastl_chy, ie., values_o§> yaﬂ_>0, the energy is dissipated proximation is:

at a finite rate. Consider, for instance, an arbitrary composi-

tion p, but y,g=vy and {=1, a situation that describes the

approach to the scaling regime of two subsystems 1 and 2 p=1—
initially prepared at two different initial granular tempera-

tures. One finds that the “energy” eigenvalueNgs=2y(y

—1), while \,=—(1—v?). To appreciate the role of, let  i.e., the temperature ratio increases linearly as a functign of
us consider the ratio of the granular temperatures: and deviates from the equipartition value 1 of an ideal gas
mixture for nonvanishing values of the inelasticity parameter
v. In Figs. 3 and 4 we display the moment ratio and the

2y
1_y(§—1), (16)

14 St gz

T A A
2 2 2 L \
14 2=t r Y — =05
2 e N ---- =04
. . N L R 1=0.3
Relation (13) means that the resulting “thermalization” ... N e ¥=0.2
time, viz. the time spent to reach the homogeneous cooling L L R -=- >0
regime is proportional to=(A,—\;) " *=(1—17) 2, i.e., is 0 RN
related to the difference between the two eigenvalues and 10 F R~
attains its maximum for the largest inelasticity=€ 1/2). The \"\‘?\w.,,_ """""""""" 1
asymptotic value of the temperature ratio is given by: - \\
I p=0.5 N tmmicecs ]
Ty (0o (- adEey -
T, 2d(2) ' || [ Loy Lo
2 10 10° 12" 10°

It is clear from Eq.(14) that the two granular tempera-
tures of the homogeneous cooling system are in general dif- g5 3 Asymptotic ratigp= 5"/ u$?) of second moments, as a
ferent (see Fig. 2 as already observed in the Enskog hardsynction of the mass ratig, for different values of the inelasticity
sphere kinetic theory of Ref13]. parametery;,= y,,= y1,= y=(1—r)/2, wherer is the restitution

In the case of an equimolar mixtur@ <€ 1/2) with equal  coefficient.p=0.5 for all the curves. The perfectly inelastic case
inelasticity parametersy, = ), but arbitrary mass ratio the y=1/2 corresponds to equal second moments for every value of the
temperature ratio is particularly simple: mass ratio.
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10* ————rrrem ——rrrrr sition p and computed the eigenvalues; and A,, with
A1>A,, of the secular equation for the fourth moments,
observing that the less negative eigenvalueis larger than
twice the eigenvalua ;. This is equivalent to say that after a
transient the rescaled fourth moment will begin to diverge as
in the one-component case. Interestingly, {ot1 we ob-
served finite rescaled fourth moments. However, this fact
does not imply that for such values of the parameters the
moment expansion of the rescaled distribution holds to all
orders. It only means that an analogous problem appears at a
higher order of the moment expansion, say at it mo-
ment. We shall elaborate on such an issue in Sec. V.

-2 L |

: — ,
1 1 1
0 (C) 0 IV. THE SCALING SOLUTION

FIG. 4. RatioT;(=)/T,(x) between asymptotic temperatures of A clue to understanding the divergence of the rescaled
the two components of the mixture, as a function of the mass rati¢igher moments came recently from the analysis of the pure
¢, for different values of the inelasticity parametef;— y,,—y,, ~ Cas€. An exact asymptotic scaling solution of the master
=y=(1-r)/2, wherer is the restitution coefficienp=0.5 for all  €quation(3) valid in the asymptotic regime has been found
the curves. The perfectly elastic case is the horizontal line that8]. The merit of such an explicit solution is to show that the
represents energy equipartition. characteristic function does not possess a moment expansion,

because of the presence of a nonanalyticity at the okgin
temperature ratio, respectively, for different values of the=0 as shown by its representation:
mass ratio and of composition.

When one carries on the evaluation of higher-order mo- f(kvo(t))=e *oM(1+uv4lk]), (19
ments one discovers the following phenomenon that is the ~
symptom that the moment expansion is ill defined: the reswhere lim_..P(k,t) =f(kvo(t)) andvo=Ae ?*" Dl s the
caled moments beyond that of ordardiverge, that is to say square root of the second moment.
the decay of themth moment is slower than that of the To appreciate such a result one can return to real velocity
(m/2)th power of the second moment. Ben-Naim andspace where the distribution space is of the form
Krapivski [7] found that in a pure system, such a phenom-

enon occurs for all moments beyond the fourth. In other v |\ 21 1
words the kurtosis of the velocity distribution diverges. This Soo))  mugl [0\ (20
is the fingerprint of the presence of an inverse-power-law tail 1+ (U—)

0

in the velocity distribution function. The situation became

clearer after the discovery of a scaling soluti@] as we ;4 the moment beyond the third diverge is due to the pres-

shall discuss below. ence of the inverse-power * tail. In fact, it is a general

A S|.m;::rlle check thOWS I’;hat the stat;e O.f l?ﬁt"’“r§|_re”;]"’"nstrEhErinciple that when a singularity of the function knspace
same In fhe case ot a muilicomponernt MIXIUre. 10 SNow thal, o, 5aches the real axis the behavior of the largmmpo-

we write the evolution equations for the fourth moments: nents of its Fourier transform turns from exponential to

power law[17,18|.
An immediate check shows that in the two-component
(173 case the above formula fails to provide the correct solution

1 4 1 4 2 1 1 2
= O+ A+ 2 ) ay

guP=d P+ dSD P + a(n$) 2+ ayuiPu?, of the master equation, with the exception of some special

cases, which correspond to a ratio of the second moments
(17b equal to 1.

where the coefficienta,; are given by Let us stress the importance of scaling solutions in the
cooling of an inelastic gas. Their existence means that the

a;1=6p[ y1(1— y101% (183  distribution is fully characterized by its second moment and

is self similar, i.e., asymptotically its shape does not change

a=6(1-p)[v2A 1~ v22) 1%, (18 apart from a trivial rescaling. Moreover, it demonstrates that

5 5 in the cooling problem the distribution functions do not look

a=6(1—p)[(1— 1)1 71212 (180 at all like the distribution functions of an elastic system,

which have an infinite nhumber of nondiverging moments.

ayn=6p[(1—v,) 1 72012 (1800  The change induced by the presence of inelasticity is a sin-

gular perturbation, viz. an abrupt qualitative modification of
We have explored the hypersurfa¢e-1 of the five di- the statistical properties of the systems.
mensional parameter spaggg,p,{ by randomly generating Do scaling solutions exist in the case of binary mixtures?
the values of the coupling constantg; and of the compo- To answer such a question let us assume that for a constant
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cooling rate there exists a scaling solution of the formsecond moments with their projection along the eigenvector

P (k,t)=f [ i) (t)k?]. This implies that the master equa- corresponding to the larger eigenvalue. Doing so the Egs.
tion for P can be converted into a differential equation with (23) reduce to a homogeneous system for the variaSjes

respect to the independent variaklevith time independent Only in correspondence of special values of the exponent

coefficients. In the one-component case it can be cast in tht@e de‘?“’f"”am Of. the coefficients is zero and ther.e. exist
nonvanishing solutions. In other words we are requiring a

solvability condition. The resulting indicial equation is
—akﬁkﬁ(k)ﬂs(k)— |5(yk)P((1— »K)=0, (21) highl_y non!inear in the unknowwr, but its numerical solu-
tion is straightforward. It reads
with a being a constant. Equatid@1) displays the presence

of a regular singular point at the origik=0. Therefore, we o 3
look for a particular solution of the form: [E)\ﬁ 1-p[y)+ (1= v1)°]1—(1—p)| v1d "}
y(k)=kR(k), o B

where o is the so called indicial exponent aR{k) is a X2t (A=plyzt (1= 72071~ Pl vai }
function that is analytic ak=0, whose value can be deter- ~ ~
mined by the Frobenius meth§9], that provides a system- —p(1—p)|1—y1d7[1— 24" =0. (24
atic tool to compute the solution as a power seriek with
noninteger exponents. R(k) is analytic one can write: We observe that Eq24) has always two solutions=0

o ando=2 for any choice of the parameteys, 5, ¢, andp.

y)=kS akn. In fact, these two values correspond to the zeroth and second
=0 moment. The nontrivial value>2 represents the indicial

exponent associated with the singularity. Somehow surpris-

However, instead of employing the general method wengly, we find that such a value af is distributed continu-
found it more convenient to extend to the two-componenipusly in the interval 2 ¢<3 as a function of the control
case the abridged version employed by Ernst and Brito tparameters. In other words it means that the inverse-power-
ascertain the nature of the high-velocity tails of the distribu-law tails of the distribution are sensitive to the composition
tions[9,20]. Their technique replaces the smialFrobenius  and to the nature of the interactions in the mixture. We have
expansion with its first few terms that contain a contributionnot found any simple dependence of the exponenn the
nonanalytic at the origin and determining self-consistentlycontrol parameters. Nevertheless, for small asymmetry we
the indicial exponent. We assume that the leading singulariobserve that- seems to deviate from the exponent3 of

ties of the Fourier transforms are of the form the pure system quadratically with the temperature ratio.
1 Knowing just the first three terms of the seri@®), apart
P (kt)=1— = uS (O K2+[ 1l ()S, [Kk|2]772 fr_om the value of the constatﬁil:Sz, which is still at our

a(k,0) 2M2 ®) VERORL disposal, we make the hypothesis that they represent the

" truncation of the expansion of the following characteristic

with exponentor and amplitude®) , andS, to be determined
by substituting the above approximation into the master
equation. The reason for keeping the fourth term will become
clear below. Notice that the first two terms in E§2) are
fixed, respectively, by the normalization condition and by the , . ,
variance of the distribution. In fact, up to the second orderWherev=o/2 andK(2) is the modified Bessel function of
Eq.(22) is analytic and identical to the Taylor expansiah. the second kind o_f order. To rende_r the matter clearer we
Substituting Eq(22) into Egs.(3) and equating the like employ the following Frobenius series representaf@h:

powers ofk we obtain the following set of coupled equa-

R 2 (kb,\"
Pa<kba>=m(7) Ku(kb,), (25

tions: kb, 2"
— o _ N (1—_n)|~. o (1)yol2 2 (kba)y _ & - (T)
Sildi+1—p(y11+ (1= y109) = (1= p)[y12d T m3 ") Tl 2 KV(kb“)_F(V) snmo) &
—S[(1=p)|1—71d TN ) 7?=0, (233 (kb )2»
SLo+ 1= (1= p) (¥op+ (1= ¥20) ") — Pl y21 "1 ($2) 2 « 1 2
5 'n+1-v) I'(n+1+vwv)]’
—Sy[p|1—"y2"1(uE)72=0. (23b)

(26)

To proceed further, we notice that for times much longer
than the thermalization time we can safely approximate theonsidering just the first few terms
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. 1 [kb,\? [Kb,\?*T(1-v) 10° T
P.kby)=1- —l—| —| 5| w5 : .
(v—1)\ 2 2 ra+v) o p=0.5,1,,=04,1,=06,1,,=0.5 =1
o p=0.28,r,,=0.48,1,,=0.92, r,=0.03
kb 4 F(l— V) 11 22 12 o
( 2 ) 2I'(3—v)’ @ ;

Thus one can see that the first terms of the séé@sand
(26) have the same exponents. Therefore, by suitably choos-
ing the coefficients of Eq(22) we can obtain the Bessel
function. In reality, we do so because we are led by the
solution of the pure case, which corresponds te3/2. In-
serting such a value and employing the following asymptotic
expansion(for z>0),

= 10"
Ka2)= 2971(14' 'Y,

FIG. 5. Rescaled asymptotic velocity distributions from numeri-
cal simulations of the model with mass ratfe=1 and different

._.
OI
T

vO(t)Pl(v)=VO(t)P2(v)

vivy(®

after substitution in Eq(25) we obtain the solutioril9).

If we insist that the identification between the seri2®)
and the modified Bessel function hold for arbitrarywe
obtain by Fourier transforming Eq26) the following ap-
proximation to the distribution functiof22]:

. —fw K e, (kb
Ua(t) - _wze a( a)

_F dk i, 2 [Kba)"
=] 2% T 2 | Ketkba),

(28)

Py

1
I'iv+ =

P( v )_ 1 2 1
a Ua,(t) _ba\/; F(V) v 27v+172s
b2

wherev?=b%/[2(v—1)] represents the second moment.

1+

(29

values of the restitution coefficients. In the inset the whole distri-
butions are shown, in the main graph the tails are magnified in
log-log scale, and fitted with an inverse power law. The predictions
obtained by solving the indicial equation ave=—3.86 for the
upper curve andr=—3.21 for the lower curve.

approximation. The consequences of this small discrepancy
are probably of minor importance for the cases considered in
the present section. The deviation of the true series from the
series representation of the approximate solution might
manifest itself in a small asymmetry in the two rescaled dis-
tribution functions, and this might involve the region of
small values ofv. In principle, there exist the possibility of
constructing a better solution via the Frobenius method.
However, we believe that one could hardly find a closed
form of the distribution functions via an inverse Fourier
transform of simplicity comparable to that of E(.9). Fi-
nally, let us remark that the fairly good agreement between
our approximation and the numerically computed solution
stems from the fact that the form we propose embodies not
only the three following basic ingredient$) the normaliza-
tion condition,(ii) the correct value of the variance, afiii)

Such an approximate form clearly displays the inversethe appropriate tails of the distributions, but also some prop-

power-law tails with the characteristic exponent 1=2v

erties of the exact distribution, which one can guess on the

+1. For a pure system sinee—3 it reduces to the known basis of pure physical reasoning. These properties are that
solution[8]. Numerically we found that such an approxima- P.(v) is symmetric with respect to, is monotonically de-

tion gives excellent results with an error that is compatiblecreasing forv>0, and is smooth. Such assumptions hugely
with the uncertainty of the numerical data as shown in Fig. 5restrict the class of all possible candidate distributions com-
Notice that the indicial equation does not give the value ofpatible with the first few terms of the expansion. In practice,
S,., but this has been fixed by our ansé25). On the other we match the smak- behavior with the small behavior,
hand we might ask how good is the ansatz. To clarify such ahich is equivalent to the largie behavior.

issue we substitute the expansi@®) into the scaling form

of the master equation and find two linear inhomogeneous
algebraic equations for the two unknowh andQ,. With-

out giving all the details we notice that these equations have So far we have employed the approximate expan&@n
certainly nonzero solutions in virtue of the fact observedand found that on the hypersurfage= 1 the indicial expo-
above,(17) that the eigenvalues of the fourth moment is notnento lies in the continuous interval2o<3. Correspond-
twice the eigenvalues of the of the second moment. The nungly, the distributions possess finite second moments, but
merical solution of the linear system gives two values of thediverging fourth moments. On the other hand fot1 as

Q’s which in general are differentq; # Q,) for nonspecial anticipated in Sec. Ill it is possible to observe different kinds
values of the parameters, hence the ansatz represents only@nbehaviors. The feature that makes the difference is what

V. HIGHER-ORDER SINGULARITIES
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FIG. 6. Power of the singularity of the solution of the coupled VIv(©)

master equations for the model, as a function of the mass ¢{atio
and the inelasticity parameter;;= y,o= y1,=y=(—r1)/2, with r
the restitution coefficient, witip=0.5.

FIG. 7. Tails of the rescaled asymptotic velocity distributions
from numerical simulations of the model with number rafio
=0.5 and different values of the restitution coefficients and of the

might be called the “isotopic effect,” i.e., induced solely by Mass ratial. The pure cas¢=1 has the exact asymptotic solution
the difference of masses in a binary mixture of particles,”(X)=(2/m)(1+x%)“~x"% The Gaussian is shown as a guide
otherwise identical. One observes the following phenom-°" 1€ eve:
enon: all rescaled moments™/ ()2 up to themth or- . . L . .
der are asymptotically finite, but diverge beyomd For small inelasticityy, the quantityy, is negative as if
This is indicative of solutions characterized by very largethe restitution coefficient for the collisiof2-1) were larger
values ofc. In other words, the allowed interval of values of than one, while + y,,=0. Under such conditions, the equa-
o is expanded. This physically means that the expoment tion for the distribution function of species 1 becomes effec-
evolves from a pronounced inverse power law to a Gaussiartively decoupled from species 2 as it can be appreciated by
like behavior ag deviates from unity. Of course, the cross- substituting Eqs(30a and (30b) in Eq. (5):
over from one regime to the other is determined by the in-
elasticity and by the mass ratio in the first place, but the . . A A
value of the exponent does not depend on any simple way  d;P1(k,t)=—P(k,t) +pP.(yk,t)P1((1— y)k,t)
from the control parameters. R R
Numerically we have considered different coupling pa- +(1-p)P1(k,t)P2(01). (39
rameters and obtained the results shown in Fig. 6 showing
the trend that the exponent of the tails increases with de- Taking into account the fact th&,(0t)=1 one recog-
creasing inelasticity and with the differenfe-1]. nizes immediately the equation for the PDF of a pure system,
In Fig. 7 we have plotted the distributions obtained withj e  of the form given by Eq(20). The decay rate of the
different values of, showing the change of the exponent of gnergy is given by;=2y(y—1)p. What happens to the
the tails with . We must stress the difficulty of obtaining |ight component? Within this limit the evolution equation for

clear numerical results for the exponents of the power-lavxf,z(k’t) looks very different from thato@l(k,t). In fact, the

tails in the case of large values .Of the smgul_ant%or of the numerical solutions indicate the existence of tails with very
absolute value of the exponent itself, whichwis- 1). In fact, large values ofr. How can we find this value of the expo-

high inverse-power-law tails need far larger statistics to benent knowing that the tails of the species 1 diverge a&
appreciated; moreover, it appeansimerically that for large The ,trick is to substitute in Eq5b) the expansiori22) and
(negative values of the expected power, the tail appears later L . - .
in the v/v, domain. This means that with a finite statistics "€9I€Ct the contribution stemming frofy (k,t) because it
one can measure powers smaller, in absolute value, th rre_sponds to a_not_hgr degre_e of singularity. At the end one
those expected from the analysis of indicial equations. Thi§Pins the new indicial equation:
phenomena has been observed also in Ff.

To simplify the analysis, let us consider first the master o
equation for large values af and equal inelasticity param- 2y(y— 1)p?2+1—(1— P)[ Y72+ (1— v)°2]
eters. One sees that 4s» the first equation for the distri-
bution P, is asymptotically decoupled from,.

+p|1-2y|72=0, (32
limy;,=1, (309 _ :
[oo which for small values ofy has a solutiono,=1[pvy(1
—v)1. That is to say for a quasielastic system the exponent
lim yp=2y—1. (30p  of the singularity diverges and all moments exist. To under-
P stand such a result we can reconsider the (Lilend see that
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FIG. 9. Plot of the rescaled velocity distributions in the case of
FIG. 8. Indicial exponents, o;, ando, of the singularity of  a large mass ratig=10 000. In the inset the two velocity distribu-
the solutions of the coupled master equatiéBsand of the singu- tions are shown, whereas in the figure the tails are displayed. The
larities of the solutions of the noncoupled master equati@hsand  tails are characterized by a different inverse power law.
(32), respectively, as functions of the mass ratid’he squares and
circles refer to the exponents obtained from the numerical simula-

tions (to be compared witlr; and o, respectively. The discrep- Il v+ 1
ancy with the theoretical predictions is due to the slow convergence, i 1 2 1
for largeo’s, of the tails to the asymptotic value, as discussed in the ,,Lnlb \/; T(v) v 27 v+ (112)
text. “ 1+ —
El
for {— the collisions between unlike particles neither 1 1 s
change the energy nor the velocity of the heavy species, =— —e V%, (34)
whereas it changes the velocity of particles 2 in the follow- V2 vo
ing way:

The reentrance phenomenon of the exporedeserves a
comment. In fact, we have seen thatcontrols the tails of
the distribution of the heavy component only. In fact, even
for £ to be finite, but larger than some valdg,, one ob-
serves a bifurcation of the exponents. Eer (., the expo-
nent of the heavy component begins to be different from the
i.e., the species 1 acts on 2 as a stochastic noise, sihcs  exponent of the light component. Therefore, our approxima-
randomly distributed according #,(v,t). Such a phenom- tion of assuming the same indicial value for both subsystems
enon is peculiar of the inelastic system under scrutiny anthecomes untenable. Nevertheless, we can find the correct
represents a sort of “reversed Brownian” motion in which values of the exponents, anda,, by considering that there
the heavy particles act as a heat bath for the light particlesis no interference between the two singularities associated

In the case of finit& we have solved the indicial ER4)  with k1 andk?2 and, therefore, we get two decoupled indic-
and constructed the curves shown in Fig. 8. For small valuegl equations. The resulting scenario is quite intriguing. After
of the inelasticityy the surface raises steeply &sdeparts  the bifurcation we have two separate trajectories obtained by
from 1, attains a maximum and then decreases again reacflrawing the values o, ando; against,. Correspondingly,
ing the asymptotic value-=3 for very large values of, as the probability qlistributior_w_functions of the two subsyst_ems
predicted by our asymptotic analy<isee Fig. 6. For larger belong to two different critical hypersurface;. In the I|.m|t.of
values of the inelasticity such isotopic effect is less pro-Y—0 one subsystem flows to the Gaussian elastic fixed
nounced. This reentrant behavior @fwith ¢ is mirrored by ~ POint, the other flows to the inelastic fixed point.
an analogous behavior of the rescaled momérits. 9).

To conclude, we remark that for large values wofthe
coefficients of the series expansion in powers aff order
n<wv are very close to the corresponding coefficients of the
series expansion of the Gaussian, and only riorv the We have discussed the cooling behavior of a simple
power-law behavior of the tails becomes manifested. Thisnodel of granular material and found that the process gives
means that numerically it might be very difficult to detect rise to scaling forms of the probability distribution function.
such a region. Finally for large, which correspond to elas- Somehow surprisingly, the distribution function has an
tic systems, one recovers the Gaussian distribution: inverse-power-law decay for large velocities of the form

v'P=v@+ M -0, (33

VI. RELATION TO NONEXTENSIVE STATISTICAL
MECHANICS
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v~ 7~ with an exponent that depends in a nontrivial fash- VIl. CONCLUSIONS
ion on the various control parameters and can vary in the

interval 2< o< in a continuous way. It is an intriguing fact . -
ya continuous spectrum of exponents characterizing the

that such inverse-power-law-like behavior looks undeniabl ) o .
similar to that emerging in the context of the so called nonJnverse-power-law tails of the velocity distribution functions.

extensive statistical mechanidd5]. To the best of our |N€ previously found solution of the pure system 1 with
knowledge, no other model of comparable simplicity to thet@il €xponento+1=4 can now be regarded as a special
present yields similar lawf23] as a result of a dynamical case. In fact, a whole spectrum of exponents extending from
process. We stress again that none of our results has be8nf0 ® exists. A natural question to ask is why the observed
derived from assumptions about the functional form of aexponents deviates from the value of the pure system. The
generalized entropy and an associated maximum entropyaive guess is that, since in the pure case the sol(fién
principle. Our results follow from a completely independentshows the remarkable feature that its functional form is in-
approach, namely, the exact treatment of inelastic collisionslependent of the cooling rate, i.e., of the microscopic inelas-
based on the master equation. ticity parametery and that the tails decay invariably as*,
Classically the temperature, besides being the average @fe same should be true in the case of a mixture of particles
the kinetic energy, is also the intensive thermodynamic fieltharacterized by different restitution coefficients. On the
conjugated to the entropy and the latter in turn is related tQontrary, in the mixture case the exponent varies with the
the distribution function. This is not the case of the granulammijcroscopic parameters. Both these contrasting aspects,
temperature, which does not possess a definition via the eframely, a single value of the exponent for the pure model
tropic route, but only via the kinetic route. In NESM, in- and a continuous spectrum of values for the mixture recall

We have seen that the Maxwell inelastic mixture displays

stead, one defines a generalized entropy, the renormalization group theory of critical phenomena,
where critical systems having different Hamiltoniafwz.
S :L 1_2 pq) different y’s in our pure casein the neighborhood of a fixed
9 g-1 T point share the same exponents. That is to say that the evo-

lution drives all systems belonging to the same criti¢gj-
where thep; are the probabilities associated with the mi- pepsurface towards a common fixed point. This is why alll
crostatesi of the system. ThereforeS, does not have a pure systems exhibit identical asymptotic behaviors in spite
unigue expression as in the classical physics, but varies witbf having different inelasticity parametey [26]. On the
the exponent] connected tar by the relation: other hand, mixtures correspond to systems whose trajectory
lies on a hypersurface whose points are attracted towards a
n fixed point characterized by +# 3, because of the presence
o+1° of other scaling fields.
The model can also be viewed as a quench realized ren-
Thus S, would be a function of the various couplings of dering suddenly inelastic an initially elastic system. The sub-
the particular system under scrutiny. sequent cooling process takes the distribution from its elastic
Summarizing, although the NESM is capable to yield ourGaussian fixed point to the zero temperature fixed point. The
results, it does not provide the value of the expompsd that  trajectory along which this process occurs is characterized by
one needs an independent procedure to obtain it and compypeculiar values of the distributions. The scaling behavior is
the appropriate) entropy. This nonuniversality of thg ex-  associated with the dynamics of the approach to the fixed
ponent means that one would need antropy for each par- point.
ticular mixture. Finally, a challenging situation for which we  Why is the scaling solution selected? Let us make the
do not know the answer within the NESM, is the one in-following observation: if we consider a mixture with a large
spired by the results of Sec. V, where the two components afiumber of identical components, the mixture formalism al-
the mixture are characterized by different power-law tails;lows us to describe independently the evolution of different
even within the same “experiment” one has to resort to twosubsystems. The associated secular equatioMfa@ompo-
different q entropies. nents will haveM eigenvaluesM — 1 of them corresponding
This state of affairs is just the result of the absence of theéo the faster modes. The scaling solution corresponds to the
zeroth law of thermodynamics for granular systems, i.e., thaslowest mode and is therefore stable, with respect to fluctua-
fact that one needs a different thermometer for each particuions.
lar granular mixture. Due to the mean-field nature of the model the fluctuations
Let us anticipate that in the case of a homogeneouslyf a given portion of the system can influence all other ele-
heated granular system our model still predicts a two temments, i.e., are very long ranged. In a more realistic descrip-
perature behavior under rather general conditions, but wittion of the inelastic interaction the scenario illustrated above
the partial temperatures not varying in tirf&4,25. On the  will not survive asymptotically, because of the onset of spa-
other hand, the velocity distribution function will not show tial fluctuations, i.e., of correlations that tend to erode the
any power-law tails, but will be very similar to the Gaussianshigh-velocity tails. These tails, on the other hand, might re-
and possess all finite moments. Thus, the power-law behawnain observable during the homogeneous cooling regime but
ior is a peculiarity of the cooling process and not a necessityvill cease after the formation of spatial gradients in the sys-
of nonextensivity, at least as far as our model is concernedtem[11].
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